Add like
Add dislike
Add to saved papers

Hemopexin Reverses Activation of Lung eIF2a and Decreases Mitochondrial Injury in Chlorine Exposed Mice.

bioRxiv 2023 August 20
We assessed the mechanisms by which non-encapsulated heme, released in the plasma of mice post exposure to chlorine (Cl 2 ) gas, resulted in the initiation and propagation of acute lung injury. We exposed adult C57BL/6 male and female to Cl 2 (500 ppm for 30 min) in environmental chambers and returned them to room air and injected them intramuscularly with a single dose of human hemopexin (hHPX; 5 µg/ g BW), the most efficient scavenger of heme, 30-60 min post exposure. Concentrations of hHPX in plasma of air and Cl 2 exposed mice were 9081±900 vs. 1879± 293 at 6 h and 2966±463 vs. 1555±250 at 50 h post injection (ng/ml; X±1 SEM=3; p<0.01). Cl 2 exposed mice developed progressive acute lung injury post exposure characterized by increased concentrations of plasma heme, marked inflammatory response, respiratory acidosis and increased concentrations of plasma proteins in the alveolar space. Injection of hHPX decreased the onset of acute lung injury at 24 h post exposure; mean survival, for the saline and hHPX groups were 40 vs. 80% (P<0.001) at 15 d post exposure. Non-supervised global proteomics analysis of mouse lungs at 24 h post exposure, revealed the upregulation of 92 and downregulation of 145 lung proteins. Injection of hHPX at one h post exposure moderated the Cl 2 induced changes in eighty-three of these 237 lung proteins. System biology analysis of the global proteomics data showed that hHPX reversed changes in mitochondrial dysfunction and elF2 and integrin signaling. Western blot analysis of lung tissue showed significant increase of phosphorylated elF2 at 24 h post exposure in vehicle treated mice but normal levels in those injected with hHPX. Similarly, RT-PCR analysis of lung tissue showed that hHPX reversed the onset of mtDNA lesions. A form of recombinant human hemopexin generated in tobacco plants was equally effective in reversing acute lung and mtDNA injury. The results of this study offer new insights as to the mechanisms by which exposure to Cl 2 results in acute lung injury and to the therapeutic effects of hemopexin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app