Add like
Add dislike
Add to saved papers

3D Cell Printing of Advanced Vascularized Proximal Tubule-on-a-Chip for Drug Induced Nephrotoxicity Advancement.

Renal dysfunction due to drug-induced nephrotoxicity (DIN) affects >20% of the adult population worldwide. The vascularized proximal tubule is a complex structure that is often the primary site of drug-induced kidney injury. Herein, a vascularized proximal tubule-on-a-chip (Vas-POAC) was fabricated, demonstrating improved physiological emulation over earlier single-cell proximal tubule models. A perfusable model of vascularized proximal tubules permits the growth and proliferation of renal proximal tubule cells and adjacent endothelial cells under various conditions. An in vitro Vas-POAC showed mature expressions of the tubule and endothelial cell markers in the mature epithelium and endothelium lumens after 7 days of culture. Expression in the mature proximal tubule epithelium resembled the polarized expression of sodium-glucose cotransporter-2 and the de novo synthesis of ECM proteins. These perfusable Vas-POACs display significantly improved functional properties relative to the proximal tubules-on-a-chip (POAC), which lacks vascular components. Furthermore, the developed Vas-POAC model evaluated the cisplatin-induced nephrotoxicity and revealed enhanced drug receptivity compared to POAC. We further evaluated the capability of the developed proximal tubule model to act as a functional platform that targets screening drug doses that can cause renal proximal tubule injury in adults. Thus, our cell-printed models may prove valuable for screening, thoughtful mechanistic investigations of DIN, and discovery of drugs that interfere with tubule formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app