Add like
Add dislike
Add to saved papers

The mitochondrial genome of the holoparasitic plant Thonningia sanguinea provides insights into the evolution of multi-chromosomal structure.

Multi-chromosomal mitochondrial genome (mitogenome) structures have repeatedly evolved in many lineages of angiosperms. However, the underlying mechanism remains unclear. The mitogenomes of three genera of Balanophoraceae, namely Lophophytum, Ombrophytum and Rhopalocnemis, have already been sequenced and assembled, all showing a highly multi-chromosomal structure, albeit with different genome and chromosome sizes. It is expected that characterization of additional lineages of this family may expand the knowledge of mitogenome diversity and provide insights into the evolution of plant mitogenome structure and size. Here, we assembled and characterized the mitogenome of Thonningia sanguinea, which, together with Balanophora, forms a clade sister to the clade comprising Lophophytum, Ombrophytum and Rhopalocnemis. The mitogenome of T. sanguinea possesses a multi-chromosomal structure of 18 circular chromosomes of 8.7 - 19.2 kb, with a total size of 246,247 bp. There are very limited shared regions and poor chromosomal correspondence between T. sanguinea and other Balanophoraceae species, suggesting frequent rearrangements and rapid sequence turnover. Numerous medium- and small-sized repeats were identified in the T. sanguinea mitogenome, however no repeat-mediated recombination was detected, which was verified by Illumina reads mapping and PCR experiments. Intraspecific mitogenome variations in T. sanguinea are mostly insertions and deletions, some of which can lead to degradation of perfect repeats in one or two accessions. Based on the mitogenome features of T. sanguinea, we propose a mechanism to explain the evolution of a multi-chromosomal mitogenome from a master circle, which involves mutation in organellar DNA replication, recombination and repair genes, decrease of recombination and repeat degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app