Add like
Add dislike
Add to saved papers

Kidney urinary biomarkers in patients with branched-chain amino acid and cobalamin metabolism defects.

There is a clinical need for early detection of chronic kidney disease (CKD) in patients with organic acidurias. We measured kidney markers in a longitudinal study over 5 years in 40 patients with methylmalonic aciduria (Mut0 ), propionic aciduria (PA), cobalamin A (CblA) and cobalamin C (CblC) deficiencies. Neutrophil gelatinase-associated lipocalin (NGAL), calprotectin (CLP), kidney injury molecule-1 (KIM-1), dickkopf-3 (DKK-3), albumin and beta-2-microglobulin (B2MG) in urine, as well as cystatin C (CysC) in serum were quantified. In Mut0 patients, mean concentrations of B2MG, KIM-1, and DKK-3 were elevated compared with healthy controls, all markers indicative of proximal tubule damage. In PA patients, mean B2MG, albumin, and CLP were elevated, indicating signs of proximal tubule and glomerulus damage and inflammation. In CblC patients, mean B2MG, NGAL, and CLP were increased, considered as markers for proximal and distal tubule damage and inflammation. B2MG, was elevated in all three diseases, and correlated with DKK-3 in Mut0 /CblA and with eGFR(CysC) and KIM-1 in PA patients, respectively. None of the markers were elevated in CblA patients. Significant deterioration of kidney function, as determined by steadily increase in CysC concentrations was noted in seven patients within the observation period. None of the investigated biomarker profiles showed a clear increase or added value for early detection. In conclusion, we identified disease-specific biomarker-profiles for inflammation, tubular and proximal damage in the urine of Mut0 , PA and CblC patients. Whether these biomarkers can be used for early detection of CKD requires further investigation, as significant kidney function deterioration was observed in only a few patients. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app