Add like
Add dislike
Add to saved papers

Luminescent iridium(III) porphyrin complexes as near-infrared-emissive biological probes.

We report herein the design, synthesis and characterisation of a series of luminescent iridium(III) porphyrin complexes [Ir(ttp)(CH2 CH2 OH)] (H2 ttp = 5,10,15,20-tetra-4-tolylporphyrin) (1), [Ir(tpp-Ph-NO2 )(CO)Cl] (H2 tpp-Ph-NO2 = 5-(4-((4-nitrophenoxy)carbonyloxymethyl)phenyl)-10,15,20-triphenylporphyrin) (2), [Ir(tpp-COOMe)(Py)2 ](Cl) (H2 tpp-COOMe = 5-(4-methoxycarbonylphenyl)-10,15,20-triphenylporphyrin; Py = pyridine) (3) and [Ir(tpp-COOH)(Py)2 ](Cl) (H2 tpp-COOH = 5-(4-carboxylphenyl)-10,15,20-triphenylporphyrin) (4). All the complexes displayed long-lived near-infrared (NIR) emission attributed to an excited state of mixed triplet intraligand (3 IL) (π → π*) (porphyrin) and triplet metal-to-ligand charge transfer (3 MLCT) (dπ(Ir) → π*(porphyrin)) character. The cytotoxicity of the complexes toward HeLa cells was examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cationic complexes 3 and 4 exhibited higher cytotoxic activity toward HeLa cells than their neutral counterparts 1 and 2. Cellular uptake studies by inductively coupled plasma-mass spectrometry (ICP-MS) and laser-scanning confocal microscopy (LSCM) indicated that complexes 3 and 4 showed higher cellular uptake efficiencies than complexes 1 and 2 due to their cationic charge, and they were enriched in the perinuclear region of the cells with negligible nuclear uptake. Additionally, the carboxyl complex 4 was used to label a model protein bovine serum albumin (BSA) via an amidation reaction. The resultant luminescent protein conjugate 4 -BSA displayed similar photophysical properties and intracellular localisation behaviour to its parent complex. The results of this work will contribute to the development of luminescent iridium(III) porphyrin complexes and related bioconjugates as NIR-emissive probes for bioimaging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app