Add like
Add dislike
Add to saved papers

Rapid and Automated Ab Initio Metabolite Collisional Cross Section Prediction from SMILES Input.

We implemented an ab initio CCS prediction workflow which incrementally refines generated structures using molecular mechanics, a deep learning potential, conformational clustering, and quantum mechanics (QM). Automating intermediate steps for a high performance computing (HPC) environment allows users to input the SMILES structure of small organic molecules and obtain a Boltzmann averaged collisional cross section (CCS) value as output. The CCS of a molecular species is a metric measured by ion mobility spectrometry (IMS) which can improve annotation of untargeted metabolomics experiments. We report only a minor drop in accuracy when we expedite the CCS calculation by replacing the QM geometry refinement step with a single-point energy calculation. Even though the workflow involves stochastic steps (i.e., conformation generation and clustering), the final CCS value was highly reproducible for multiple iterations on L-carnosine. Finally, we illustrate that the gas phase ensembles modeled for the workflow are intermediate files which can be used for the prediction of other properties such as aqueous phase nuclear magnetic resonance chemical shift prediction. The software is available at the following link: https://github.com/DasSusanta/snakemake_ccs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app