Add like
Add dislike
Add to saved papers

Inflammatory macrophages prevent colonic goblet and enteroendocrine cell differentiation through Notch signaling.

bioRxiv 2023 June 30
Inflammatory macrophages in the intestine are a key pathogenic factor driving inflammatory bowel disease (IBD). Here, we report the role of inflammatory macrophage-mediated notch signaling on secretory lineage differentiation in the intestinal epithelium. Utilizing IL-10-deficient ( Il10 -/- ) mice, a model of spontaneous colitis, we found an increase in Notch activity in the colonic epithelium as well as an increase in intestinal macrophages expressing Notch ligands, which are increased in macrophages upon inflammatory stimuli. Furthermore, a co-culture system of inflammatory macrophages and intestinal stem and proliferative cells during differentiation reduced goblet and enteroendocrine cells. This was recapitulated when utilizing a Notch agonist on human colonic organoids (colonoids). In summary, our findings indicate that inflammatory macrophages upregulate notch ligands that activate notch signaling in ISC via cell-cell interactions, which in turn inhibits secretory lineage differentiation in the gastrointestinal (GI) tract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app