Add like
Add dislike
Add to saved papers

Genome-wide DNA methylation analysis in schizophrenia with tardive dyskinesia: a preliminary study.

Genes & Genomics 2023 July 7
BACKGROUND: Tardive dyskinesia (TD) develops in 20-30% of schizophrenia patients and up to 50% in patients > 50 years old. DNA methylation may play an important role in the development of TD.

OBJECTIVE: DNA methylation analyses in schizophrenia with TD.

METHODS: We conducted a genome-wide DNA methylation analysis in schizophrenia with TD using methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-Seq) in a Chinese sample including five schizophrenia patients with TD and five without TD (NTD), and five healthy controls. The results were expressed as the log2 FC, fold change of normalized tags between two groups within the differentially methylated region (DMR). For validation, the pyrosequencing was used to quantify DNA methylation levels of several methylated genes in an independent sample (n = 30).

RESULTS: Through genome-wide MeDIP-Seq analysis, we identified 116 genes that were significantly differentially methylated in promotor regions in comparison of TD group with NTD group including 66 hypermethylated genes (top 4 genes are GABRR1, VANGL2, ZNF534, and ZNF746) and 50 hypomethylated genes (top 4 genes are DERL3, GSTA4, KNCN, and LRRK1). Part of these genes (such as DERL3, DLGAP2, GABRR1, KLRG2, LRRK1, VANGL2, and ZP3) were previously reported to be associated with methylation in schizophrenia. Gene Ontology enrichment and KEGG pathway analyses identified several pathways. So far, we have confirmed the methylation of 3 genes (ARMC6, WDR75, and ZP3) in schizophrenia with TD using pyrosequencing.

CONCLUSIONS: This study identified number of methylated genes and pathways for TD and will provide potential biomarkers for TD and serve as a resource for replication in other populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app