Add like
Add dislike
Add to saved papers

Semi-automatic muscle segmentation in MR images using deep registration-based label propagation.

Fully automated approaches based on convolutional neural networks have shown promising performances on muscle segmentation from magnetic resonance (MR) images, but still rely on an extensive amount of training data to achieve valuable results. Muscle segmentation for pediatric and rare diseases cohorts is therefore still often done manually. Producing dense delineations over 3D volumes remains a time-consuming and tedious task, with significant redundancy between successive slices. In this work, we propose a segmentation method relying on registration-based label propagation, which provides 3D muscle delineations from a limited number of annotated 2D slices. Based on an unsupervised deep registration scheme, our approach ensures the preservation of anatomical structures by penalizing deformation compositions that do not produce consistent segmentation from one annotated slice to another. Evaluation is performed on MR data from lower leg and shoulder joints. Results demonstrate that the proposed few-shot multi-label segmentation model outperforms state-of-the-art techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app