Add like
Add dislike
Add to saved papers

Employing computational tools to design a multi-epitope vaccine targeting human immunodeficiency virus-1 (HIV-1).

BMC Genomics 2023 May 25
BACKGROUND: Despite being in the 21st century, the world has still not been able to vanquish the global AIDS epidemic, and the only foreseeable solution seems to be a safe and effective vaccine. Unfortunately, vaccine trials so far have returned unfruitful results, possibly due to their inability to induce effective cellular, humoral and innate immune responses. The current study aims to tackle these limitations and propose the desired vaccine utilizing immunoinformatic approaches that have returned promising results in designing vaccines against various rapidly mutating organisms. For this, all polyprotein and protein sequences of HIV-1 were retrieved from the LANL (Los Alamos National Laboratory) database. The consensus sequence was generated after alignment and used to predict epitopes. Conserved, antigenic, non-allergenic, T-cell inducing, B-cell inducing, IFN-ɣ inducing, non-human homologous epitopes were selected and combined to propose two vaccine constructs i.e., HIV-1a (without adjuvant) and HIV-1b (with adjuvant).

RESULTS: HIV-1a and HIV-1b were subjected to antigenicity, allergenicity, structural quality analysis, immune simulations, and MD (molecular dynamics) simulations. Both proposed multi-epitope vaccines were found to be antigenic, non-allergenic, stable, and induce cellular, humoral, and innate immune responses. TLR-3 docking and in-silico cloning of both constructs were also performed.

CONCLUSION: Our results indicate HIV-1b to be more promising than HIV-1a; experimental validations can confirm the efficacy and safety of both constructs and in-vivo efficacy in animal models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app