Add like
Add dislike
Add to saved papers

Large-scale fabrication of ion-selective electrodes for simultaneous detection of Na + , K + , and Ca 2+ in biofluids using a smartphone-based potentiometric sensing platform.

Mikrochimica Acta 2023 May 25
A significant bottleneck exists for mass-production of ion-selective electrodes despite recent developments in manufacturing technologies. Here, we present a fully-automated system for large-scale production of ISEs. Three materials, including polyvinyl chloride, polyethylene terephthalate and polyimide, were used as substrates for fabricating ion-selective electrodes (ISEs) using stencil printing, screen-printing and laser engraving, respectively. We compared sensitivities of the ISEs to determine the best material for the fabrication process of the ISEs. The electrode surfaces were modified with various carbon nanomaterials including multi-walled carbon nanotubes, graphene, carbon black, and their mixed suspensions as the intermediate layer to enhance sensitivities of the electrodes. An automated 3D-printed robot was used for the drop-cast procedure during ISE fabrication to eliminate manual steps. The sensor array was optimized, and the detection limits were 10-5  M, 10-5  M and 10-4  M for detection of K+ , Na+ and Ca2+ ions, respectively. The sensor array integrated with a portable wireless potentiometer was used to detect K+ , Na+ and Ca2+ in real urine and simulated sweat samples and results obtained were in agreement with ICP-OES with good recoveries. The developed sensing platform offers low-cost detection of electrolytes for point-of-care applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app