Add like
Add dislike
Add to saved papers

Meta-analysis informed machine learning: Supporting cytokine storm detection during CAR-T cell Therapy.

Cytokine release syndrome (CRS), also known as cytokine storm, is one of the most consequential adverse effects of chimeric antigen receptor therapies that have shown otherwise promising results in cancer treatment. When emerging, CRS could be identified by the analysis of specific cytokine and chemokine profiles that tend to exhibit similarities across patients. In this paper, we exploit these similarities using machine learning algorithms and set out to pioneer a meta-review informed method for the identification of CRS based on specific cytokine peak concentrations and evidence from previous clinical studies. To this end we also address a widespread challenge of the applicability of machine learning in general: reduced training data availability. We do so by augmenting available (but often insufficient) patient cytokine concentrations with statistical knowledge extracted from domain literature. We argue that such methods could support clinicians in analyzing suspect cytokine profiles by matching them against the said CRS knowledge from past clinical studies, with the ultimate aim of swift CRS diagnosis. We evaluate our proposed methods under several design choices, achieving performance of more than 90% in terms of CRS identification accuracy, and showing that many of our choices outperform a purely data-driven alternative. During evaluation with real-world CRS clinical data, we emphasize the potential of our proposed method of producing interpretable results, in addition to being effective in identifying the onset of cytokine storm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app