Add like
Add dislike
Add to saved papers

Observing strongly confined multiexcitons in bulk-like CsPbBr3 nanocrystals.

We monitor the time-resolved photoluminescence (t-PL) from CsPbBr3 perovskite nanocrystals with a time resolution of 3 ps, which is fast enough to resolve emission from potential multiexcitonic states. Being 15 nm in length and twice the Bohr length, these nanocrystals are either weakly confined or bulk-like. In contrast to this expectation of weak confinement, emission from multiexcitons is observed with binding energies consistent with strongly confined quantum dots. In addition to emission from biexcitons, emission from triexcitons is observed. The triexciton emission includes both S and P recombination channels. Excitation with different amounts of excess energy yields the same PL spectral dynamics, indicating that there are no hot carrier effects, and the electronic structure of the absorbing states is the same. The kinetics of the multiexciton populations are presented in two ways. The kinetics are first shown in a spectrally integrated form, showing faster t-PL at higher fluences independent of excitation excess energy. Both excess energies show the same saturation response. In the second way of presenting the kinetics, the multiexciton populations are decomposed and presented as transients and saturation curves. These decomposed spectra into exciton, biexciton, and triexciton populations enable further insight into their kinetics and fluence dependence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app