Add like
Add dislike
Add to saved papers

Synergistic effect of bovine cateslytin-loaded nanoparticles combined with ultrasound against Candida albicans biofilm.

Purpose: To investigate the synergistic effect of bovine cateslytin-loaded nanoparticles (bCAT-NPs) combined with ultrasound against Candida albicans biofilm and uncover the underlying mechanism. Methods: bCAT-NPs were prepared by the double emulsion method, and toxicity was observed by the hemolysis ratio. The metabolic activity and viable cell biomass, morphology and membrane permeability of C. albicans biofilm were observed. The expression of ALS3 mRNA, the content of reactive oxygen species, was detected. Finally, bCAT structure was analyzed. Results & conclusion: The hemolysis ratio of the bCAT-NPs group was significantly lower than that of the bCAT group. bCAT-NPs combined with ultrasound significantly reduced biofilm metabolic activity, inhibited the formation of hyphae, decreased the expression of ALS3 mRNA and increased the intracellular reactive oxygen species content. In the in vivo experiments, the colony-forming units/ml in the ultrasound+bCAT-NPs group decreased, and a few planktonic fungal cells were observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app