Add like
Add dislike
Add to saved papers

A novel tumor-promoting role for nuclear factor IX in glioblastoma is mediated through transcriptional activation of GINS1.

Our previous study illustrated that nuclear factor IX (NFIX) promotes glioblastoma (GBM) progression by inducing migration and proliferation of GBM cells. However, the underlying mechanism of how NFIX regulates GBM cell proliferation remains obscure. In this study, we uncovered that Go-Ichi-Ni-San 1 (GINS1) is up-regulated and positively correlated with NFIX in human GBM specimen. NFIX silencing down-regulates the expression of GINS1, which is pivotal for cell-cycle progression and proliferation of GBM cells. Replenishment of GINS1 largely rescues the NFIX-null effect on GBM cell proliferation. Mechanistic investigation revealed that NFIX transcriptionally actives GINS1 expression by directly binding to promoter region (-1779 to -1793bp) of the GINS1 gene. Furthermore, knockdown of NFIX sensitizes GBM cells to DNA damage-inducing agents including Doxorubicin (DOX) and Temozolomide (TMZ), in a GINS1-dependent manner. Implications: Our study highlights that targeting NFIX-GINS1 axis could be a novel and potential therapeutic approach for GBM treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app