Add like
Add dislike
Add to saved papers

Delivery of Bioactive Albumin from Multi-Functional Polyampholyte Hydrogels.

Tissue engineered scaffolds are currently being explored to aid in healing and regeneration of non-union fractures in bone. Additionally, albumin has been demonstrated to provide benefits to healing when applied to injury sites. This paper focuses on delivery of calcium modified, bioactive bovine serum albumin (BSA) from a multi-functional polyampholyte polymer scaffold. First, the inherent nonfouling and conjugation properties of the polyampholyte hydrogel were verified to determine the impact of calcium exposure. The polyampholyte hydrogel delivery platform was then assessed with calcium titrations and osteoblast-like cell (MC3T3-E1) adhesion, proliferation, and viability evaluations. Finally, integrin inhibitors were used to identify the binding mechanisms that mediate cell adhesion to the calcium-modified BSA-conjugated hydrogels. An increase in cell adhesion was observed following calcium exposure up to 0.075 M, although this and higher calcium concentrations affected hydrogel stability and cell growth. BSA exposed to 0.05 M calcium and delivered from polyampholyte hydrogels promoted the most promising viable cell adhesion over 7 days. Cell adhesion to the calcium-modified BSA-conjugated hydrogels appeared to be regulated by arginine-glycine-aspartic acid (RGD) and collagen specific integrins. These results demonstrate that the delivery of calcium modified BSA from an implantable polymer scaffold is promising for bone tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app