Add like
Add dislike
Add to saved papers

Calcium enhances polyhydroxyalkanoate production and promotes selective growth of the polyhydroxyalkanoate-storing biomass in municipal activated sludge.

Water Research 2022 October 19
Activated sludge from municipal wastewater treatment processes can be used directly for the production of biodegradable polyesters from the family of polyhydroxyalkanoates (PHAs). However, municipal activated sludge typically cannot accumulate PHAs to very high levels and often low yields of polymer produced on substrate are observed. In the present work, it was found that the presence of calcium promotes selective growth and enrichment of the PHA-storing biomass fraction and significantly improved both PHA contents and yields. Calcium addition resulted in PHA contents of 0.60 ± 0.03 gPHA/gVSS and average PHA yields on substrate of 0.49 ± 0.03 gCODPHA /gCODHAc compared to 0.35 ± 0.01 gPHA/gVSS and 0.19 ± 0.01 gCODPHA /gCODHAc without calcium addition. After 48 h, three times more PHA was produced compared to control experiments without calcium addition. Higher PHA content and selective biomass production is proposed to be a consequence of calcium dependent increased levels of passive acetate uptake. Such more efficient substrate uptake could be related to a formation of calcium acetate complexes. Findings lead to bioprocess methods to stimulate a short-term selective growth of PHA-storing microorganisms and this enables improvements to the techno-economic feasibility for municipal waste activated sludge to become a generic resource for industrial scale PHA production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app