Add like
Add dislike
Add to saved papers

Sphingolipids and Asthma.

Asthma is the most prevalent chronic respiratory disease worldwide and the leading serious chronic illness in children. Clinical characteristics are wheezing, reversible airway obstruction, airway inflammation, and airway hyperreactivity. Asthma susceptibility is influenced by genes and environment. 17q12-21 is the most significant genetic asthma susceptibility locus and single nucleotide polymorphisms (SNPs) within that high-risk locus are linked to increased expression of the Ormdl sphingolipid biosynthesis regulator (ORMDL) 3. ORMDL3 is an endoplasmic reticulum protein that stabilizes the serine palmitoyl transferase (SPT) complex that regulates sphingolipid de novo synthesis. Sphingolipids essential for formation and integrity of cellular membranes and bioactive molecules that regulate key cellular processes can be synthesized de novo and through recycling pathways. Their metabolism is tightly regulated through feedback regulation. ORMDL3 inhibits de novo synthesis when it engages subunit 1 of the SPT complex. This chapter focuses on the effect of decreased sphingolipid synthesis on asthma features and summarizes studies in mouse models and in children with and without asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app