Add like
Add dislike
Add to saved papers

Development of a peptide aptamer pair-linked rapid fluorescent diagnostic system for Zika virus detection.

A rapid diagnostic system employing an antigen detection biosensing method is needed to discriminate between Zika virus (ZIKV) and Dengue virus (DENV) due to their close antigenic homology. We developed a novel peptide pair-based flow immunochromatographic test strip (FICT) assay to detect ZIKV. Peptide aptamers, P6.1 (KQERNNWPLTWT), P29.1 (KYTTSTLKSGV), and B2.33 (KRHVWVSLSYSCAEA) were designed by paratopes and modified against the ZIKV envelope protein based on the binding affinity. An antibody-free lateral FICT was developed using a pair of peptide aptamers. In the rapid diagnostic strip, the limit of detection (LOD) for the B2.33-P6.1 peptide pair for ZIKV was 2 × 104 tissue culture infective dose TCID50 /mL. Significantly, FICT could discriminate ZIKV from DENV. The stability and performance of FICT were confirmed using human sera and urine, showing a comparable LOD value. Our study demonstrated that in silico modeling could be used to develop a novel peptide pair-based FICT assay for detecting ZIKV by a rapid diagnostic test.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app