Add like
Add dislike
Add to saved papers

Clinical and Biochemical Features of Hypopituitarism Among Brazilian Children With Zika Virus-Induced Microcephaly.

Importance: The Zika virus infects progenitor neuron cells, disrupts cerebral development, and, in mice, drives hypothalamic defects. Patients with microcephaly caused by congenital Zika infection present with midline cerebral defects, which may result in hypopituitarism.

Objective: To analyze postnatal growth and the presence of clinical and biochemical features associated with hypopituitarism in children with congenital Zika infections.

Design, Setting, and Participants: In this prospective cohort study at 2 public referral hospitals in Bahia, Brazil, specializing in the treatment of congenital Zika infection, clinical data and growth parameters of 65 patients with the infection were evaluated. Data were analyzed from April 2017 through July 2018.

Exposure: Congenital Zika infection.

Main Outcomes and Measures: Length, weight, and head circumference were measured at birth and during follow up (ie, at 27 months of life) for each patient. Basal levels of free thyroxine, thyrotropin, cortisol, corticotropin, prolactin, insulin-like growth factor 1, insulin-like growth factor binding protein 3, urine and plasma osmolality, electrolytes, glucose, and insulin were evaluated at the age of 26 months to 28 months. All patients underwent central nervous system computed tomography scans and ophthalmic and otoacoustic evaluations at the time of this investigation or had done so previously.

Results: Among 65 patients (38 [58.4%] male; median [interquartile range] age at enrollment, 27 [26-28] months), 61 patients presented with severe brain defects (93.8%), including corpus callosum agenesis or hypoplasia (ie, midline brain defects; 25 patients [38.5%]) and optic nerve atrophy (38 patients [58.5%]). Most patients presented with severe neurodevelopmental delay (62 of 64 patients [96.9%]). Past or present clinical signs of hypopituitarism were rare, occurring in 3 patients (4.6%). Severe microcephaly, compared with mild or moderate microcephaly, was associated with a shorter length by median (interquartile range) z score at birth (-1.9 [-2.5 to -1.0] vs -0.3 [-1.0 to 0]; P < .001), but this difference did not persist at 27 months (-1.6 [-2.3 to -0.3] vs -2.9 [-4.0 to -1.2]; P = .06). Growth hormone deficiency or hypothyroidism were not observed in any patients, and glucose and insulin levels were within reference ranges for all patients. Low cortisol levels (ie, below 3.9 µg/dL) were observed in 4 patients (6.2%). These 4 patients presented with low (ie, below 7.2 pg/mL) or inappropriately low (ie, below 30 pg/mL) corticotropin levels. Low corticotropin levels (ie, below 7.2 pg/mL) were observed in 6 patients (9.2%). Diabetes insipidus was evaluated in 21 patients; it was confirmed in 1 patient (4.8%) and suggested in 3 patients (14.3%).

Conclusions and Relevance: This study found that congenital Zika infection with microcephaly was associated with midline brain defects and optic nerve atrophy. Children with congenital Zika infections presented with prenatal growth impairments with a lack of postnatal catch-up, as shown by persistent short length from birth until 27 months; these impairments were not associated with growth hormone deficiency. Patients also presented with severe developmental delay that was not associated with hypothyroidism, while central adrenal insufficiency and diabetes insipidus occurred in some patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app