Add like
Add dislike
Add to saved papers

Hydrolysis of Methoxylated Nickel Hydroxide Leading to Single-Layer Ni(OH) 2 Nanosheets.

Various methods for the preparation of inorganic nanosheets have been established and they have contributed to the substantial development of the research on diverse two-dimensional materials. Covalent surface modification of layered metal hydroxides with alkoxy groups is known to effectively weaken the interactions between layers, although the modified ligands are irreversibly immobilized. This study proposes the use of methanol as a removable surface modifier forming monodentate alkoxy bonds to prepare nickel hydroxide nanosheets through hydrolysis. Methoxylated layered nickel hydroxide, consisting of randomly stacked nano-sized nickel hydroxide sheets (10-20 nm in size) having Ni-OCH3 groups on its surface, was synthesized in a powder form through the precipitation reaction of a nickel salt in methanol at room temperature. After dispersing the aggregated methoxylated nickel hydroxide in water, single-layer nickel hydroxide nanosheets with a thickness of 1.2 nm and a lateral size of 460 nm at maximum, which is larger than the size of original methoxylated nickel hydroxide were found in the suspension. The time-course experiments during hydrolysis suggested that two-dimensional crystal growth of exfoliated nickel hydroxide sheets proceeded, resulting in the formation of the nanosheets. Moreover, single-layer and nano-sized cobalt hydroxide was prepared through a similar manner. This work demonstrates that two-dimensional alkoxides consisting of polymeric M-O-M bonds are useful precursors for the design of metal-hydroxide-based nanomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app