Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The Transition Metal Catalyzed [π2s + π2s + σ2s + σ2s] Pericyclic Reaction: Woodward-Hoffmann Rules, Aromaticity, and Electron Flow.

We have shown that the fundamental step responsible for enantioinduction in the inner-sphere asymmetric Tsuji allylic alkylation is C-C bond formation through a seven-membered pericyclic transition state. We employ an extensive series of quantum mechanics (QM) calculations to delineate how the electronic structure of the Pd-catalyzed C-C bond forming process controls the reaction. Phase inversion introduced by d orbitals renders the Pd-catalyzed [π2s + π2s + σ2s + σ2s] reaction symmetry-allowed in the ground state, proceeding through a transition state with Craig-Möbius-like σ-aromaticity. Lastly, we connect QM to fundamental valence bonding concepts by deriving an ab initio "arrow-pushing" mechanism that describes the flow of electron density through the reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app