Add like
Add dislike
Add to saved papers

(Hetero-)(arylidene)arylhydrazides as Multitarget-Directed Monoamine Oxidase Inhibitors.

Fourteen (hetero-)(arylidene)arylhydrazide derivatives ( ABH1 - ABH14 ) were synthesized, and their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE) were evaluated. Compound ABH5 most potently inhibited MAO-B with an IC50 value of 0.025 ± 0.0019 μM; ABH2 and ABH3 exhibited high IC50 values as well. Most of the compounds weakly inhibited MAO-A, except ABH5 (IC50 = 3.31 ± 0.41 μM). Among the active compounds, ABH2 showed the highest selectivity index (SI) of 174 for MAO-B, followed by ABH5 (SI = 132). ABH3 and ABH5 effectively inhibited AChE with IC50 values of 15.7 ± 6.52 and 16.5 ± 7.29 μM, respectively, whereas the other compounds were weak inhibitors of AChE. ABH5 was shown to be a reversible competitive inhibitor for MAO-A and MAO-B with K i values of 0.96 ± 0.19 and 0.024 ± 0.0077 μM, respectively, suggesting that this molecule can be considered as an interesting candidate for further development as a multitarget inhibitor relating to neurodegenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app