Journal Article
Review
Add like
Add dislike
Add to saved papers

Carbon Dioxide Absorption During Inhalation Anesthesia: A Modern Practice.

CO2 absorbents were introduced into anesthesia practice in 1924 and are essential when using a circle system to minimize waste by reducing fresh gas flow to allow exhaled anesthetic agents to be rebreathed. For many years, absorbent formulations consisted of calcium hydroxide combined with strong bases like sodium and potassium hydroxide. When Sevoflurane and Desflurane were introduced, the potential for toxicity (compound A and CO, respectively) due to the interaction of these agents with absorbents became apparent. Studies demonstrated that strong bases added to calcium hydroxide were the cause of the toxicity, but that by eliminating potassium hydroxide and reducing the concentration of sodium hydroxide to <2%, compound A and CO production is no longer a concern. As a result, CO2 absorbents have been developed that contain little or no sodium hydroxide. These CO2 absorbent formulations can be used safely to minimize anesthetic waste by reducing fresh gas flow to approach closed-circuit conditions. Although absorbent formulations have been improved, practices persist that result in unnecessary waste of both anesthetic agents and absorbents. While CO2 absorbents may seem like a commodity item, differences in CO2 absorbent formulations can translate into significant performance differences, and the choice of absorbent should not be based on unit price alone. A modern practice of inhalation anesthesia utilizing a circle system to greatest effect requires reducing fresh gas flow to approach closed-circuit conditions, thoughtful selection of CO2 absorbent, and changing absorbents based on inspired CO2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app