Add like
Add dislike
Add to saved papers

Downregulation of RalGTPase-activating protein promotes invasion of prostatic epithelial cells and progression from intraepithelial neoplasia to cancer during prostate carcinogenesis.

Carcinogenesis 2019 December 32
RalGTPase-activating protein (RalGAP) is an important negative regulator of small GTPases RalA/B that mediates various oncogenic signaling pathways in various cancers. Although the Ral pathway has been implicated in prostate cancer (PCa) development and progression, the significance of RalGAP in PCa has been largely unknown. We examined RalGAPα2 expression using immunohistochemistry on two independent tissue microarray sets. Both datasets demonstrated that the expression of RalGAPα2 was significantly downregulated in PCa tissues compared to adjacent benign prostatic epithelia. Silencing of RalGAPα2 by short hairpin RNA enhanced migration and invasion abilities of benign and malignant prostate epithelial cell lines without affecting cell proliferation. Exogenous expression of wild-type RalGAP, but not the GTPase-activating protein activity-deficient mutant of RalGAP, suppressed migration and invasion of multiple PCa cell lines and was phenocopied by pharmacological inhibition of RalA/B. Loss of Ralgapa2 promoted local microscopic invasion of prostatic intraepithelial neoplasia without affecting tumor growth in a Pten-deficient mouse model for prostate tumorigenesis. Our findings demonstrate the functional significance of RalGAP downregulation to promote invasion ability, which is a property necessary for prostate carcinogenesis. Thus, loss of RalGAP function has a distinct role in promoting progression from prostatic intraepithelial neoplasia to invasive adenocarcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app