English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Molecular diagnosis of multidrug-resistant tuberculosis in sputum samples by melting curve analysis].

OBJECTIVES.: To analyze melting curves for the diagnosis of multidrug-resistant tuberculosis from sputum samples.

MATERIALS AND METHODS.: Sputum samples (n = 250) were collected from patients with clinical suspicion of pulmonary tuberculosis as a result of bacilloscopy and cultured in solid medium Lowenstein Jensen. According to the reference method, 124 samples sensitive to rifampicin and isoniazid, 24 resistant to rifampicin, 33 resistant to isoniazid, and 69 multidrug-resistant were used. It was evaluated by real-time PCR and then by melting curves, the rpoB gene was used as a biomarker of rifampicin resistance, and the katG gene and inhA promoter region were used as biomarkers of isoniazid resistance. The H37Rv strain was considered a drug-sensitive control. The results of the reference method and the results of the melting curve analysis were compared to evaluate the parameters of sensitivity, specificity, positive predictive value and negative predictive value.

RESULTS.: Rifampicin resistance showed a sensitivity of 90.3%, specificity of 90.4%, positive predictive value of 84.8% and negative predictive value of 94.0%. Isoniazid resistance showed a sensitivity of 90.2%, specificity of 93.9%, positive predictive value of 91.1% and negative predictive value of 93.3%. The detection of multidrug-resistant tuberculosis showed values of 89.9%, 90.6%, 78.5% and 95.9% for sensitivity, specificity, positive predictive value and negative predictive value, respectively.

CONCLUSIONS.: The melting curve analysis showed to be safe and reliable to be used in the rapid diagnosis of multidrug-resistant tuberculosis in sputum samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app