Add like
Add dislike
Add to saved papers

Crystal structure, spectroscopic characterization and DFT study of two new linear fused-ring chalcones.

The structures of two new anthracenyl chalcones, namely ( E )-1-(anthracen-9-yl)-3-(4-nitro-phen-yl)prop-2-en-1-one, C23 H15 NO3 , and ( E )-1-(anthracen-9-yl)-3-(4-iodo-phen-yl)prop-2-en-1-one, C23 H15 IO are reported. A structural comparative study between the two chalcones was performed and some effects on the geometrical parameters, such as planarity and dihedral angles, are described. The mol-ecular geometry was determined by single-crystal X-ray diffraction, and density functional theory (DFT) at B3LYP with the 6-311++G(d,p) basis set was applied to optimize the ground-state geometry. In addition, inter-molecular inter-actions responsible for the crystal packing were analysed. The electronic properties, such as excitation energies and HOMO-LUMO energies were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The mol-ecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and qu-antify the possible reactive sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app