Add like
Add dislike
Add to saved papers

Evidence of Osteogenic Regulation in Calcific Porcine Aortic Valves.

Heart Surgery Forum 2018 September 14
BACKGROUND: Chemically cross-linked animal tissues, such as porcine aortic valves (PAVs) have many documented advantages over mechanical valves. However, calcification is the major underlying pathologic process that results in bioprosthetic valve failure. Recently, several reports described the expression of noncollagenous bone matrix proteins in bioprosthetic valves and suggested an actively regulated process of tissue repair.

METHODS: Thirty-one explanted PAVs with evidence of calcification were collected and examined for the protein expression implicated in myofibroblast activation, osteoblast differentiation, and bone matrix deposition by using immunohistochemistry.

RESULTS: The mean duration that PAVs were implanted was 11.5 ± 5.6 years, ranging from 12 months to 28 years. Pearson correlation analysis showed a significant relationship between the duration and valvular calcification (r = 0.3818, P = .034). The number of vimentin-positive mesenchymal cells in explanted PAVs was significantly lower than that of unused PAVs (P < .01). However, increased expression of α-smooth muscle actin (α-SMA) (P < .01), proliferating cell nuclear antigen (PCNA, P < .01), Cbfa1/Runx2 (P < .01), osterix (P = .0126), bone sialoprotein (BSP, P < .01), osteocalcin (P < .01), and osteopontin (P < .01) was found in explanted PAVs. Immunohistochemical staining of alkaline phosphatase (ALP) and osteocalcin was negative in the unused PAVs. In explanted PAVs, the expression level of these 2 proteins was also significantly increased.

CONCLUSIONS: Our results support the view that PAV calcification is an actively regulated process with osteogenic signaling activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app