Add like
Add dislike
Add to saved papers

Reconstitution of Mammalian Enzymatic Deacylation Reactions in Live Bacteria Using Native Acylated Substrates.

ACS Synthetic Biology 2018 October 20
Lysine deacetylases (KDACs) are enzymes that catalyze the hydrolysis of acyl groups from acyl-lysine residues. The recent identification of thousands of putative acylation sites, including specific acetylation sites, created an urgent need for biochemical methodologies aimed at better characterizing KDAC-substrate specificity and evaluating KDACs activity. To address this need, we utilized genetic code expansion technology to coexpress site-specifically acylated substrates with mammalian KDACs, and study substrate recognition and deacylase activity in live Escherichia coli. In this system the bacterial cell serves as a "biological test tube" in which the incubation of a single mammalian KDAC and a potential peptide or full-length acylated substrate transpires. We report novel deacetylation activities of Zn2+ -dependent deacetylases and sirtuins in bacteria. We also measure the deacylation of propionyl-, butyryl-, and crotonyl-lysine, as well as novel deacetylation of Lys310-acetylated RelA by SIRT3, SIRT5, SIRT6, and HDAC8. This study highlights the importance of native interactions to KDAC-substrate recognition and deacylase activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app