Add like
Add dislike
Add to saved papers

Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells.

Novel drug delivery strategies are needed to meet the complex challenges associated to cancer therapy. Biocompatible pH-sensitive drug delivery nanocarriers based on amphiphilic co-polymers seem to be promising for cancer treatment. In the present study, a drug delivery system was produced by encapsulating quercetin into novel pH-sensitive self-assembled amphiphilic chitosan nanoparticles. Up to 83% of quercetin was entrapped by the nanoparticles. The particle diameter, as measured by dynamic light scattering (DLS), ranged from ∼235 to ∼312 nm for the blank and ∼490 to ∼502 nm for the loaded carriers. The results showed that the payload release is larger at acidic pH (5.0) than at physiological pH (7.4). Fitting the data to the Korsmeyer-Peppas model indicated that anomalous diffusion is the predominant release mechanism at pH 5.0, while Fickian diffusion operates at pH 7.4. The MTT assay revealed that blank nanoparticles were non-antiproliferative for the cell tested. The results further revealed that quercetin maintains its metabolism inhibition against MCF-7 cells after encapsulation. Cellular uptake experiments showed that nanoparticles accumulated on the cell surface, whereas few were internalized. Haemocompatibility test results suggest that the nanoparticles exhibit suitable blood compatibility for biological applications. Results suggest that nanoparticles might be a promising pH-sensitive drug delivery system for applications in anticancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app