Add like
Add dislike
Add to saved papers

Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model.

Melanoma is resistant to chemotherapeutics with poor prognosis and high potential of metastasis. Photodynamic therapy (PDT) represents a localized therapeutic modality, as cytotoxicity occurs when light activates photosensitizer (PS) at the tumour site. The aim of this study is dermal delivery of a high molecular weight hydrophilic photosensitizer (PS), ferrous chlorophyllin (Fe-CHL) via transethosomes for treatment of melanoma by PDT. Transethosomes were made of phosphatidyl choline, edge activator and 20% w/v Ethanol. They were evaluated for mean size, zeta potential, entrapment efficiency, ex-vivo permeation, localization in skin layers by transmission electron microscope (TEM), and finally, evaluated in melanoma animal model. Transethosomes of different mean vesicle size were evaluated for their skin retention and permeation through mice skin. TE of ∼500 nm (E3) being ultradeformable showed deep localization in skin confirmed by ex-vivo and TEM micrographs without permeation of PS to recipient compartment due to its size. The proposed study offers successful treatment of resistant melanoma by PDT, where complete tumour regression of small tumours occurred after single PDT, while large tumours after double PDT without recurrence for 8 months. This indicates the efficiency of nanovesicles in PS delivery and the efficiency of Fe-CHL in production of reactive oxygen species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app