Add like
Add dislike
Add to saved papers

General memristor with applications in multilayer neural networks.

Memristor describes the relationship between charge and flux. Although several window functions for memristors based on the HP linear and nonlinear dopant drift models have been studied, most of them are inadequate to capture the full characteristics of memristors. To address this issue, this paper proposes a unified window function to describe a general memristor with restrictions of its parameters given. Compared with other window functions, the proposed function demonstrates high validity and accuracy. In order to make the simulation results have high consistency with the results of actual circuit, we apply the new window function to the simulation of a memristor-based multilayer neural network (MNN) circuit. The overall accuracy will vary with the change of control parameters in the window function. It implies that the proposed model can guide the design of actual memristor-based circuits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app