Add like
Add dislike
Add to saved papers

BPRMeth: a flexible Bioconductor package for modelling methylation profiles.

Bioinformatics 2018 July 16
Motivation: High-throughput measurements of DNA methylation are increasingly becoming a mainstay of biomedical investigations. While the methylation status of individual cytosines can sometimes be informative, several recent papers have shown that the functional role of DNA methylation is better captured by a quantitative analysis of the spatial variation of methylation across a genomic region.

Results: Here, we present BPRMeth, a Bioconductor package that quantifies methylation profiles by generalized linear model regression. The original implementation has been enhanced in two important ways: we introduced a fast, variational inference approach that enables the quantification of Bayesian posterior confidence measures on the model, and we adapted the method to use several observation models, making it suitable for a diverse range of platforms including single-cell analyses and methylation arrays.

Availability and implementation: https://bioconductor.org/packages/BPRMeth.

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app