Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biogenic Nanostructured Porous Silicon as a Carrier for Stabilization and Delivery of Natural Therapeutic Species.

Molecular Pharmaceutics 2017 December 5
Nanostructured mesoporous silicon (pSi) derived from the silicon-accumulator plant Tabasheer (Bambuseae) is demonstrated to serve as a potential carrier matrix for carrying and stabilizing naturally active, but otherwise metastable, therapeutic agents. Particularly, in this study, garlic oil containing phytochemicals (namely, allicin) that are capable of inhibiting Staphylococcus aureus (S. aureus) bacterial growth were incorporated into Tabasheer-derived porous silicon. Thermogravimetric analysis (TGA) indicated that relatively high amounts of the extract (53.1 ± 2.2 wt %) loaded into pSi are possible by simple infiltration. Furthermore, by assessing the antibacterial activity of the samples using a combination technique of agar disk diffusion and turbidity assays against S. aureus, we report that biogenic porous silicon can be utilized to stabilize and enhance the therapeutic effects of garlic oil for up to 4 weeks when the samples were stored under refrigerated conditions (4 °C) and 1 week at room temperature (25 °C). Critically, under ultraviolet (UV) light (365 nm) irradiation for 24 h intervals, plant-derived pSi is shown to have superior performance in protecting garlic extracts over porous silica (pSiO2 ) derived from the same plant feedstock or extract-only controls. The mechanism for this effect has also been investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app