Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Nickel-Catalyzed Copolymerization of Ethylene and Vinyltrialkoxysilanes: Catalytic Production of Cross-Linkable Polyethylene and Elucidation of the Chain-Growth Mechanism.

Copolymerizations of ethylene with vinyltrialkoxysilanes using cationic (α-diimine)Ni(Me)(CH3 CN)+ complexes 4a,b/B(C6 F5 )3 yield high molecular weight copolymers exhibiting highly branched to nearly linear backbones depending on reaction conditions and catalyst choice. Polymerizations are first-order in ethylene pressure and inverse-order in silane concentration. Microstructural analysis of the copolymers reveals both in-chain and chain-end incorporation of -Si(OR)3 groups whose ratios depend on temperature and ethylene pressure. Detailed low-temperature NMR spectroscopic investigations show that well-defined complex 3b (α-diimine)Ni(Me)(OEt2 )+ reacts rapidly at -60 °C with vinyltrialkoxysilanes via both 2,1 and 1,2 insertion pathways to yield 4- and 5-membered chelates, respectively. Such chelates are the major catalyst resting states but are in rapid equilibrium with ethylene-opened chelates, (α-diimine)Ni(R)(C2 H4 )+ complexes, the species responsible for chain growth. Chelate rearrangement via β-silyl elimination accounts for formation of chain-end -Si(OR)3 groups and constitutes a chain-transfer mechanism. Chelate formation and coordination of the Ni center to the ether moiety, R-O-Si, of the vinylsilane somewhat decreases the turnover frequency (TOF) relative to ethylene homopolymerization, but still remarkably high TOFs of up to 4.5 × 105 h-1 and overall productivities can be achieved. Activation of readily available (α-diimine)NiBr2 complexes 2 with a combination of AlMe3 /B(C6 F5 )3 /[Ph3 C][B(C6 F5 )4 ] yields a highly active and productive catalyst system for the convenient synthesis of the copolymer, a cross-linkable PE. For example, copolymers containing 0.23 mol % silane can be generated at 60 °C, 600 psig ethylene over 4 h with a productivity of 560 kg copolymer/g Ni. This method offers an alternative route to these materials, normally prepared via radical routes, which are precursors to the commercial cross-linked polyethylene, PEX-b.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app