Add like
Add dislike
Add to saved papers

Limited synapse overproduction can speed development but sometimes with long-term energy and discrimination penalties.

Neural circuit development requires that synapses be formed between appropriate neurons. In addition, for a hierarchical network, successful development involves a sequencing of developmental events. It has been suggested that one mechanism that helps speed up development of proper connections is an early overproduction of synapses. Using a computational model of synapse development, such as adaptive synaptogenesis, it is possible to study such overproduction and its role in speeding up development; it is also possible to study other outcomes of synapse overproduction that are seemingly new to the literature. With a fixed number of neurons, adaptive synaptogenesis can control the speed of synaptic development in two ways: by altering the rate constants of the adaptive processes or by altering the initial number of rapidly but non-selectively accrued synapses. Using either mechanism, the simulations reveal that synapse overproduction appears as an unavoidable concomitant of rapid adaptive synaptogenesis. However, the shortest development times, which always produces the greatest amount of synapse overproduction, reduce adult performance by three measures: energy use, discrimination error rates, and proportional neuron allocation. Thus, the results here lead to the hypothesis that the observed speed of neural network development represents a particular inter-generational compromise: quick development benefits parental fecundity while slow development benefits offspring fecundity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app