Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

LRRK2 functions as a scaffolding kinase of ASK1-mediated neuronal cell death.

Leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein, is a key causative factor in Parkinson's disease (PD). Identification of novel substrates and the molecular mechanisms underlying the effects of LRRK2 are essential for understanding the pathogenesis of PD. In this study, we showed that LRRK2 played an important role in neuronal cell death by directly phosphorylating and activating apoptosis signal-regulating kinase 1 (ASK1). LRRK2 phosphorylated ASK1 at Thr832 that is adjacent to Thr845, which serves as an autophosphorylation site. Moreover, results of binding and kinase assays showed that LRRK2 acted as a scaffolding protein by interacting with each components of the ASK1-MKK3/6-p38 MAPK pathway through its specific domains and increasing the proximity to downstream targets. Furthermore, LRRK2-induced apoptosis was suppressed by ASK1 inhibition in neuronal stem cells derived from patients with PD. These results clearly indicate that LRRK2 acts as an upstream kinase in the ASK1 pathway and plays an important role in the pathogenesis of PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app