Add like
Add dislike
Add to saved papers

Tumor Dose Response in Yttrium-90 Resin Microsphere Embolization for Neuroendocrine Liver Metastases: A Tumor-Specific Analysis with Dose Estimation Using SPECT-CT.

PURPOSE: To evaluate dose-response relationship in yttrium-90 (90 Y) resin microsphere radioembolization for neuroendocrine tumor (NET) liver metastases using a tumor-specific dose estimation based on technetium-99m-labeled macroaggregated albumin (99m Tc MAA) single photon emission computed tomography (SPECT)-CT.

MATERIALS AND METHODS: Fifty-five tumors (mean size 3.9 cm) in 15 patients (10 women; mean age 57 y) were evaluated. Tumor-specific absorbed dose was estimated using a partition model. Initial (median 2.3 months) follow-up data were available for all tumors; last (median 7.6 months) follow-up data were available for 45 tumors. Tumor response was evaluated using Modified Response Evaluation Criteria in Solid Tumors (mRECIST) on follow-up CT. Tumors with complete or partial response were considered responders. Mean tumor absorbed dose was 231.4 Gy ± 184.3, and mean nontumor liver absorbed dose was 39.0 Gy ± 18.0.

RESULTS: Thirty-six (65.5%) and 30 (66.7%) tumors showed response at initial and last follow-up, respectively. Mean absorbed doses in responders and nonresponders at initial and last follow-up were 285.8 Gy ± 191.1 and 128.1 Gy ± 117.1 (P = .0004) and 314.3 Gy ± 195.8 and 115.7 Gy ± 117.4 (P = .0001). Cutoff value of ≥ 191.3 Gy for tumor-specific absorbed dose predicted tumor response with 93% specificity, whereas < 72.8 Gy predicted nonresponse with 100% specificity at last follow-up. Estimated mean absorbed tumor dose per patient was significantly higher in responders versus nonresponders over the follow-up period (224.5 Gy ± 90.3 vs 70.0 Gy ± 28.0; P = .007).

CONCLUSIONS: Tumor-specific absorbed dose, estimated with a partition model, was significantly associated with tumor response in NET liver metastases. An estimated dose ≥ 191.3 Gy predicted treatment response with high sensitivity and specificity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app