Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements.

Myoelectric control of rehabilitation devices engages active recruitment of muscles for motor task accomplishment, which has been proven to be essential in motor rehabilitation. Unfortunately, most electromyographic (EMG) activity-based controls are limited to one single degree-of-freedom (DoF), not permitting multi-joint functional tasks. On the other hand, discrete EMG-triggered approaches fail to provide continuous feedback about muscle recruitment during movement. For such purposes, myoelectric interfaces for continuous recognition of functional movements are necessary. Here we recorded EMG activity using 5 bipolar electrodes placed on the upper-arm in 8 healthy participants while they performed reaching movements in 8 different directions. A pseudo on-line system was developed to continuously predict movement intention and attempted arm direction. We evaluated two hierarchical classification approaches. Movement intention detection triggered different movement direction classifiers (4 or 8 classes) that were trained and tested over a 5-fold cross validation. We also investigated the effect of 3 different window lengths to extract EMG features on classification. We obtained classification accuracies above 70% for both hierarchical approaches. These results highlight the viability of classifying online 8 upper-arm different directions using surface EMG activity of 5 muscles and represent a first step towards an online EMG-based control for rehabilitation devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app