Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies.

Preparation of antibody-drug conjugates (ADCs), an emerging novel class of highly targeted biological hybrid agents, necessitates precise control of conjugation reactivity. Antibodies have complex multistranded architectures, and specific modification of natural antibodies has proven quite challenging. Here, we demonstrate that cooperative activity of a multimetallic metallopeptide enables efficient site-specific antibody functionalization, based on molecular recognition of the constant Fc region. This interplay of multiple metal centers enables introduction of an orthogonal alkyne handle into monoclonal or polyclonal antibodies from different species in an Fc-specific fashion. Elaboration of this simple functionalization allows preparation of conjugates with fluorophore, affinity handle, and pharmacological agents. This method opens a new opportunity for quick and easy production of well-defined antibody conjugates from a variety of antibody sequence and species of origin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app