Add like
Add dislike
Add to saved papers

A Flow Imaging Microscopy-Based Method Using Mass-to-Volume Ratio to Derive the Porosity of PLGA Microparticles.

The release of drugs from poly(lactic-co-glycolic acid) (PLGA) microparticles depends to a large extent on the porosity of the particles. Therefore, porosity determination of PLGA microparticles is extremely important during pharmaceutical product development. Currently, mercury intrusion porosimetry (MIP) is widely used despite its disadvantages, such as the need for a large amount of sample (several hundreds of milligrams) and residual toxic waste. Here, we present a method based on the estimation of the volume of a known mass (a few milligrams) of particles using micro-flow imaging (MFI) to determine microparticle batch porosity. Factors that are critical for the accuracy of this method (i.e., density of the suspending fluid, particle concentration, and postsample rinsing) were identified and measures were taken to minimize potential errors. The validity of the optimized method was confirmed by using nonporous polymethylmethacrylate microparticles. Finally, the method was employed for the analysis of 7 different PLGA microparticle batches with various porosities (4.0%-51.9%) and drug loadings (0%-38%). Obtained porosity values were in excellent agreement with the MIP-derived porosities. Altogether, the developed MFI-based method is a valuable tool for deriving the total volume of a known mass of PLGA particles and therewith their porosity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app