Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Recovery of Damped Exponentials Using Structured Low Rank Matrix Completion.

We introduce a structured low rank matrix completion algorithm to recover a series of images from their under-sampled measurements, where the signal along the parameter dimension at every pixel is described by a linear combination of exponentials. We exploit the exponential behavior of the signal at every pixel, along with the spatial smoothness of the exponential parameters to derive an annihilation relation in the Fourier domain. This relation translates to a low-rank property on a structured matrix constructed from the Fourier samples. We enforce the low-rank property of the structured matrix as a regularization prior to recover the images. Since the direct use of current low rank matrix recovery schemes to this problem is associated with high computational complexity and memory demand, we adopt an iterative re-weighted least squares algorithm, which facilitates the exploitation of the convolutional structure of the matrix. Novel approximations involving 2-D fast Fourier transforms are introduced to drastically reduce the memory demand and computational complexity, which facilitates the extension of structured low-rank methods to large scale 3-D problems. We demonstrate our algorithm in the MR parameter mapping setting and show improvement over the state-of-the-art methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app