Add like
Add dislike
Add to saved papers

Analyzing the influence of curl speed in fatiguing biceps brachii muscles using sEMG signals and multifractal detrended moving average algorithm.

In this work, an attempt has been made to analyze surface electromyography (sEMG) signals of fatiguing biceps brachii muscles at different curl speeds using multifractal detrended moving average (MFDMA) algorithm. For this purpose, signals are recorded from fifty eight healthy subjects while performing curl exercise at their comfortable speed until fatigue. The signals of first and last curls are considered as nonfatigue and fatigue conditions, respectively. Further, the number of curls performed by each subject and the endurance time is used for computing the normalized curl speed. The signals are grouped into fast, medium and slow using curl speeds. The curl segments are subjected to MFDMA to derive degree of multifractality (DOM), maximum singularity exponent (MXE) and exponent length multifractality index (EMX). The results show that multifractal features are able to differentiate sEMG signals in fatiguing conditions. The multifractality increased with faster curls as compared with slower curl speed by 12%. High statistical significance is observed using EMX and DOM values between curl speed and fatigue conditions. It appears that this method of analyzing sEMG signals with curl speed can be useful in understanding muscle dynamics in varied neuromuscular conditions and sports medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app