Add like
Add dislike
Add to saved papers

Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro.

The clinical benefits of electromagnetic field (EMF) therapy in enhancing osteogenesis have been acknowledged for decades, but agreement regarding the underlying mechanisms continues to be sought. Studies have shown EMFs to promote osteoblast-like cell proliferation, or contrarily, to induce differentiation and enhance mineralization. Typically these disparities have been attributed to methodological differences. The present paper argues the possibility that the chosen osteoblast model impacts stimulation outcome. Phenotypically immature cells, particularly at low seeding densities, appear to be prone to EMF-amplified proliferation. Conversely, mature cells at higher densities seem to be predisposed to earlier onset differentiation and mineralization. This suggests that EMFs augment ongoing processes in cell populations. To test this hypothesis, mature SaOS-2 cells and immature MC3T3-E1 cells at various densities, with or without osteo-induction, were exposed to sinusoidal 50 Hz EMF. The exposure stimulated the proliferation of MC3T3-E1 and inhibited the proliferation of SaOS-2 cells. Baseline alkaline phosphatase (ALP) expression of SaOS-2 cells was high and rapidly further increased with EMF exposure, whereas ALP effects in MC3T3-E1 cells were not seen until the second week. Thus both cell types responded differently to EMF stimulation, corroborating the hypothesis that the phenotypic maturity and culture stage of cells influence stimulation outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app