Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Counter-ligand control of the electronic structure in dinuclear copper-tetrakisguanidine complexes.

The redox-active GFA (Guanidino-Functionalized Aromatic compound) 1,4,5,8-tetrakis(tetramethylguanidino)-naphthalene (6) is used to synthesize new dinuclear copper complexes of the formula [6(CuX2)2] with different electronic structures. With X = OAc, a dinuclear Cu(II) complex of the neutral GFA is obtained (electronic structure [Cu(II)-GFA-Cu(II)], two unpaired electrons), and with X = Br a diamagnetic dinuclear Cu(I) complex of the dicationic GFA (electronic structure [Cu(I)-GFA(2+)-Cu(I)], closed-shell singlet state). The different electronic structures lead to significant differences in the optical, structural and magnetic properties of the complexes. Furthermore, the complex [6(CuI)2](2+) (electronic structure [Cu(I)-GFA(2+)-Cu(I)], closed-shell singlet state) is synthesized by reaction of 6(2+) with two equivalents of CuI. Slow decomposition of this complex in solution leads to the fluorescent dye 2,7-bis(dimethylamino)-1,3,6,8-tetraazapyrene. In an improved synthesis of this tetraazapyrene, 6 is reacted with CuBr in the presence of dioxygen. Quantum chemical calculations show that the addition of counter-ligands to the trigonal planar Cu(I) atoms of [6(CuI)2](2+) favors or disfavors one of the electronic structures, depending on the nature of the counter-ligand.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app