Add like
Add dislike
Add to saved papers

Narrow interval dual phase 18F-FDG PET/CT: A practical approach for distinguishing tumor recurrence from radiation necrosis in brain metastasis.

Purpose of our research is to demonstrate efficacy of narrow interval dual phase [18F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in distinguishing tumor recurrence (TR) from radiation necrosis (RN) in patients treated for brain metastases. 35 consecutive patients (22 female, 13 male) with various cancer subtypes, lesion size > 1.0 cm3, and suspected recurrence on brain magnetic resonance imaging (MRI) underwent narrow interval dual phase FDG-PET/CT (30 and 90 min after tracer injection). Clinical outcome was determined via sequential MRIs or pathology reports. Maximum standard uptake value (SUVmax) of lesion (L), gray matter (GM), and white matter (WM) was measured on early (1) and delayed (2) imaging. Analyzed variables include % change, late phase, and early phase for L uptake, L/GM uptake, and L/WM uptake. Statistical analysis (P < .01), receiver operator characteristic (ROC) curve and area under curve (AUC) cutoff values were obtained. Change in L/GM ratio of > -2% was 95% sensitive, 91% specific, and 93% accurate (P < .001, AUC = 0.99) in distinguishing TR from RN. Change in SUVmax of lesion alone was the second-best indicator (P < .001, AUC = 0.94) with an ROC cutoff > 30.5% yielding 86% sensitivity, 83% specificity, and 84% accuracy. Other variables (L alone or L/GM ratios in early or late phase, all L/WM ratios) were significantly less accurate. Utilizing narrow interval dual phase FDG-PET/CT in patients with brain metastasis treated with radiation therapy provides a practical approach to distinguish TR from RN. Narrow time interval allows for better patient comfort, greater efficiency of PET/CT scanner, and lower disruption of workflow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app