Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Highly efficient microbial inactivation enabled by tunneling charges injected through two-dimensional electronics.

Science Advances 2024 May 4
Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app