Add like
Add dislike
Add to saved papers

Structural changes in corticospinal tract profiling via multishell diffusion models and their relation to overall survival in glioblastoma.

PURPOSE: Advanced MR fiber tracking imaging reflects fiber bundle invasion by glioblastoma, particularly of the corticospinal tract (CST), which is more susceptible as the largest downstream fiber tracts. We aimed to investigate whether CST features can predict the overall survival of glioblastoma.

METHODS: In this prospective secondary analysis, 40 participants (mean age, 58 years; 16 male) pathologically diagnosed with glioblastoma were enrolled. Diffusion spectrum MRI was used for CST reconstruction. Fifty morphological and diffusion indicators (DTI, DKI, NODDI, MAP and Q-space) were used to characterize the CST. Optimal parameters capturing fiber bundle damage were obtained through various grouping methods. Eventually, the correlation with overall survival was determined by the hazard ratios (HRs) from various Cox proportional hazard model combinations.

RESULTS: Only intracellular volume fraction (ICVF) and non-Gaussianity (NG) values on the affected tumor level were significant in all four groups or stratified comparisons (all P < .05). During the median follow-up 698 days, only the ICVF on the affected tumor level was independently associated with overall survival, even after adjusting for all classic prognostic factors (HR [95 % CI]: 0.611 [0.403, 0.927], P = .021). Moreover, stratification by the ICVF on the affected tumor level successfully predicted risk (P < .01) and improved the C-index of the multivariate model (from 0.695 to 0.736).

CONCLUSIONS: This study demonstrates a relationship between NODDI-derived CST features, ICVF on the affected tumor level, and overall survival in glioblastoma. Independent of classical prognostic factors for glioblastoma, a lower ICVF on the affected tumor level might predict a lower overall survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app