Add like
Add dislike
Add to saved papers

Transcription factor Nrf2 activation regulates NETosis, endothelial injury, and kidney disease in myeloperoxidase-positive antineutrophil cytoplasmic antibody-associated vasculitis.

Kidney International 2024 March 26
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease pathologically characterized by vascular necrosis with inflammation. During AAV development, activated neutrophils produce reactive oxygen species (ROS), leading to the aberrant formation of neutrophil extracellular traps (NETs) via NETosis and subsequent fibrinoid vascular necrosis. Nuclear factor-erythroid 2-related factor 2 (Nrf2) functions as an intracellular defense system to counteract oxidative stress by providing antioxidant properties. Herein, we explored the role of Nrf2 in the pathogenesis of AAV. The role and mechanism of Nrf2 in ANCA-stimulated neutrophils and subsequent endothelial injury were evaluated in vitro using Nrf2 genetic deletion and Nrf2 activator treatment. In corresponding in vivo studies, the role of Nrf2 in ANCA-transfer AAV and spontaneous AAV murine models was examined. Pharmacological activation of Nrf2 in vitro suppressed ANCA-induced NET formation via the inhibition of ROS. In contrast, NET formation was enhanced in Nrf2-deficient neutrophils. Furthermore, Nrf2 activation protected endothelial cells from ANC-induced NETs-mediated injury. In vivo, Nrf2 activation ameliorated glomerulonephritis in two AAV models by upregulating antioxidants and inhibiting ROS-mediated NETs. Furthermore, Nrf2 activation restrained the expansion of splenic immune cells, including T lymphocytes and limited the infiltration of Th17 cells into the kidney. In contrast, Nrf2 genetic deficiency exacerbated vasculitis in a spontaneous AAV model. Thus, the pathophysiological process in AAV may be downregulated by Nrf2 activation, potentially leading to a new therapeutic strategy by regulating NETosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app