English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Multicenter evaluation of minimal residual disease monitoring in early induction therapy for treatment of childhood acute lymphoblastic leukemia].

Objective: To evaluate the role of minimal residual disease (MRD) monitoring during early induction therapy for the treatment of childhood acute lymphoblastic leukemia (ALL). Methods: This was a multicenter retrospective cohort study. Clinical data of 1 164 ALL patients first diagnosed between October 2016 and June 2019 was collected from 16 hospitals in South China Children's Leukemia Group. According to MRD assay on day 15 of early induction therapy, they were divided into MRD<0.10% group, MRD 0.10%-<10.00% group and MRD≥10.00% group. According to MRD assay on day 33, they were divided into MRD<0.01% group, MRD 0.01%-<1.00% group and MRD≥1.00% group. Age, onset white blood cell count, central nervous system leukemia (CNSL), molecular genetic characteristics and other data were compared between groups. Kaplan-Meier method was used for survival analysis. Cox regression model was used to analyze prognostic factors. Results: Of the 1 164 enrolled patients, there were 692 males and 472 females. The age of diagnosis was 4.7 (0.5, 17.4) years. The white blood cell count at initial diagnosis was 10.7 (0.4, 1 409.0) ×109 /L. Among all patients, 53 cases (4.6%) had CNSL. The follow-up time was 47.6 (0.5, 68.8) months. The 5-year overall survival (OS) and 5-year relapse-free survival (RFS) rates were (93.1±0.8) % and (90.3±1.1) %. On day 15 of early induction therapy, there were 466 cases in the MRD<0.10% group, 523 cases in the MRD 0.10%-<10.00% group and 175 cases in the MRD≥10.00% group. The 5-year OS rates of the MRD<0.10% group, MRD 0.10%-<10.00% group and MRD≥10.00% group were (95.4±1.0) %, (93.3±1.1) %, (85.4±2.9) %, respectively, while the RFS rates were (93.2±1.6) %, (90.8±1.4) %, (78.9±4.3) %, respectively ( χ 2 =16.47, 21.06, both P <0.05). On day 33 of early induction therapy, there were 925 cases in the MRD <0.01% group, 164 cases in the MRD 0.01%-<1.00% group and 59 cases in the MRD≥1.00% group. The 5-year RFS rates in the MRD 0.01%-<1.00% group was lowest among three groups ((91.4±1.2) % vs. (84.5±3.2) % vs. (87.9±5.1) %). The difference between three groups is statistically significant ( χ 2 =9.11, P =0.010). Among ALL patients with MRD≥10.00% on day 15 of induction therapy, there were 80 cases in the MRD <0.01% group on day 33, 45 cases in the MRD 0.01%-<1.00% group on day 33 and 45 cases in the MRD≥1.00% group on day 33. The 5-year RFS rates of three groups were (83.9±6.0)%, (67.1±8.2)%, (83.3±6.9)% respectively ( χ 2 =6.90, P =0.032). Univariate analysis was performed in the MRD≥10.00% group on day 15 and the MRD 0.01%-<1.00% group on day 33.The 5-year RFS rate of children with CNSL was significantly lower than that without CNSL in the MRD≥10.00% group on day 15 ((50.0±20.4)% vs. (80.3±4.4)%, χ 2 =4.13, P =0.042). Patients with CNSL or MLL gene rearrangement in the MRD 0.01%-<1.00% group on day 33 had significant lower 5-year RFS rate compared to those without CNSL or MLL gene rearrangement ((50.0±25.0)% vs. (85.5±3.1)%, χ 2 =4.06, P =0.044;(58.3±18.6)% vs. (85.7±3.2)%, χ 2 =9.44, P =0.002). Multivariate analysis showed that age ( OR =0.58, 95% CI 0.35-0.97) and white blood cell count at first diagnosis ( OR =0.43, 95% CI 0.27-0.70) were independent risk factors for OS. The MRD level on day 15 ( OR =0.55,95% CI 0.31-0.97), ETV6-RUNX1 fusion gene ( OR =0.13,95% CI 0.03-0.54), MLL gene rearrangement ( OR =2.55,95% CI 1.18-5.53) and white blood cell count at initial diagnosis ( OR =0.52,95% CI 0.33-0.81) were independent prognostic factors for RFS. Conclusions: The higher the level of MRD in early induction therapy, the worse the OS. The MRD levels on day 15 is an independent prognostic factor for RFS.The MRD in early induction therapy guided accurate risk stratification and individualized treatment can improve the survival rate of pediatric ALL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app